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Université de Nice-Sophia Antipolis, Laboratoire J.-A. Dieudonné, Parc Valrose,
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The stability of a separating boundary-layer flow at the rear of a two-dimensional
bump mounted on a flat plate is numerically investigated. Above a critical Reynolds
number, the flow field is shown to undergo self-sustained two-dimensional low-
frequency fluctuations in the upstream region of the separation bubble, evolving
into aperiodic vortex shedding further downstream. The computed steady flow states
below the critical Reynolds number are shown to be convectively unstable. On
extrapolating the flow field to Reynolds numbers above criticality, some evidence
is found that the onset of the oscillatory behaviour coincides with topological
flow changes near the reattachment point leading to the rupture of the (elongated)
recirculation bubble. The structural changes near reattachment are shown to trigger an
abrupt local transition from convective to absolute instability, at low frequencies. On
preventing the separation bubble from bursting by reaccelerating the flow by means of
a second bump further downstream, the separated flow remains steady for increasing
Reynolds numbers, until a local region of absolute instability in the upper part of
the geometrically controlled recirculation bubble is produced. The resulting global
instability consists of self-sustained nonlinear saturated perturbations oscillating at
a well-defined frequency, very distinct from the the low-frequency motion of the
elongated recirculation bubble in the single-bump geometry. A frequency selection
criterion based on local absolute frequencies, which has been successfully applied to
wake flows, is shown to accurately predict the global frequency.

1. Introduction
Laminar separating flow occurs in many engineering applications such as tur-

bomachinery flow and in low-Reynolds-number aerodynamics. Flow separation is
often synonymous with loss of performance such as increase in drag or loss of
lift on airfoils at angles of attack close to stall values. Flow separation occurs, for
instance, in flow geometries with abrupt enlargements. One prototype geometry for
flow separation is the backward-facing step which has been extensively studied by
experimental as well as numerical means (e.g. Sinha, Gupta & Oberai 1981; Armaly
et al. 1983; Williams & Baker 1997 and references therein). Laminar separation
bubbles may also be generated on smooth surfaces such as flat plates, by imposing an
adverse pressure gradient using an opposite contoured wall with suction (Häggmark,
Bakchinov & Alfredsson 2000). In the numerical investigations of Pauley, Moin &
Reynolds (1990) and Ripley & Pauley (1993), for instance, an adverse external pressure
gradient has been applied to a low-Reynolds-number boundary-layer flow. Unsteady
separated and reattaching flow induced by a leading-edge geometry has been studied
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experimentally, for instance, by Cherry, Hillier & Latour (1984), whereas in recent
numerical large-eddy simulations separated boundary-layer transition induced by the
change of leading-edge curvature has been considered (Yang & Voke 2001).

Even for the prototype backward-facing step flow, it seems that up to now there
is no clear-cut answer concerning the critical Reynolds number for global instability.
It has, for instance, been shown by Kaiktsis, Karniadakis & Orszag (1996) that two-
dimensional unsteady flow may be the consequence of random noise or numerical
discretization errors which sustain perturbations in a convectively unstable asymptotic
flow state (which would remain time-independent in the absence of any external
excitation). The onset of three-dimensionality has been addressed by, among others,
Kaiktsis, Karniadakis & Orszag (1991) and more recently by Williams & Baker (1997),
who give a state-of-the-art numerical simulation of three-dimensional backward-facing
step flow and comparison with experiments. In a very recent work (Barkley, Gomes
& Henderson 2002), the three-dimensional instability in backward-facing step flow is
addressed: it is shown that the two-dimensional steady flow becomes first unstable
with respect to stationary three-dimensional perturbations, on increasing the Reynolds
number. The flow in this investigation is confined between two plates with the step
change on the lower one.

While three-dimensional perturbations should be of importance for global instabi-
lity, there is however some evidence that two-dimensional self-sustained oscillations
for critical flow conditions are general features of separated flows. Focusing on the
mechanisms of instability in separating flow using a model of a separation bubble,
Hammond & Redekopp (1998) give some support to the hypothesis that local two-
dimensional absolute instability may occur in separating flow which, in turn, may
trigger global oscillations. Two-dimensional fluctuations have, for instance, been
reported for separated flow induced by adverse pressure gradients (Pauley et al. 1990;
Häggmark et al. 2000), but also for separation bubbles triggered by leading-edge
geometries (Cherry et al. 1984; Yang & Voke 2001). Using steady basic flow data from
Rist & Maucher (1994), the non-parallel instability of a laminar separation bubble
has been addressed by Theofilis, Hein & Dallmann (2000), focusing in particular on
topological flow changes. They reinforce earlier conjectures by Dallmann et al. (1995),
that the unsteadiness coincides with the breakup of the separation bubble into several
recirculation zones.

Self-sustained oscillatory flow behaviour in open flows has received a lot of attention
during the last two decades. It is now well-established that for slowly spatially develop-
ing flows, local absolute instability is intimately connected with the onset of global
instabilities observed for critical flow conditions in the absence of external perturbat-
ions (Huerre & Monkewitz 1990). The relationship between oscillatory global behav-
iour and local absolute instability is now well-established for wake flows (Koch
1985; Hannemann & Oertel 1989) and inhomogeneous jets (Monkewitz et al. 1990).
More recently, considering slowly spatially varying model flows on infinite intervals,
a linear criterion for the selection of global frequencies based on local absolute
stability characteristics has been given (Le Dizès et al. 1996), while nonlinear
frequency selection has been addressed in Couairon & Chomaz (1997). Using direct
numerical simulation of the nonlinear impulse response in a parallel wake, Delbende
& Chomaz (1998) have given strong evidence of global modes exhibiting a front at the
streamwise location of marginal absolute instability. The relevant transition scenarios
characterized by self-sustained structures have been analysed by Pier, Huerre &
Chomaz (2001). Frequency selection criteria based on local absolute frequency curves
have been shown to accurately predict vortex street dynamics in weakly non-parallel
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wakes (Pier & Huerre 2001) and subsequently for cylinder wakes (Pier 2002) (even
though for this latter flow case the hypothesis of slow variation only approximately
applies in the vicinity of the cylinder).

For (wall-bounded) separated boundary-layer flow, however, up to now there seems
not to be clear evidence for whether observed global instabilities may be related to
the existence of regions in the separation bubble exhibiting local absolutely unstable
velocity profiles. The low-frequency fluctuations observed for instance in experiments
(Häggmark et al. 2000; Cherry et al. 1984) or in numerical simulations (Pauley et al.
1990) are not fully understood. The corresponding global instability is manifested
in the reattachment region (a region of strongly varying flow) and gives rise to an
overall motion of the separated shear layer (Dovgal, Kozlov & Michalke 1994). For
the model of a separation bubble, using a family of modified Falkner–Skan profiles,
in Hammond & Redekopp (1998) the onset of local absolute instability is analysed
in terms of the amount of reversed flow. Laminar separation bubbles have been
numerically computed by Alam & Sandham (2000). In this latter work mean velocity
profiles are extrapolated from the numerical data and local profiles are shown to
become absolutely unstable for a critical amount of reversed flow. Regions of reversed
flow also appear in mixed convection boundary layers and again model profiles may
be extrapolated from numerical data to produce absolutely unstable velocity profiles
(Moresco & Healey 2000). In a very recent investigation, Rist & Maucher (2002)
provide linear stability results for modelled flow profiles with reverse flow near the
wall, which are compared with two-dimensional direct numerical simulation results
where separation is triggered by free-stream conditions. The authors report low-
frequency fluctuations of the separation bubble which coexist with high-frequency
oscillations, but it seems that there is no clear interpretation of the global oscillations
with respect to local convective versus local absolute instability. Hence, up to now
it has not been demonstrated that local absolute instability is a typical feature of
two-dimensional, ‘real’ separating boundary-layer flow.

Here, we reassess the question of the onset of nonlinear oscillations in separated
boundary-layer flow. As mentioned above, separation may be triggered by geometrical
devices, for instance surfaces with sharp gradients, or by imposing adverse pressure
gradients. In the present investigation separating flow is induced by a smooth bump
mounted on a flat plate. The flow transitions continuously from a favourable to an
adverse pressure gradient, leading to separation at the rear of the bump. The data for
the bump geometry have been provided by Bernard et al. (2003): they consider an
equivalent bump in wind tunnel experiments, with a shape that has been optimized
using Reynolds-averaged Navier–Stokes simulation results (for the adverse pressure
gradient at the rear of the bump to mimic that on the upper side of an airfoil at high
angle of attack).

In § 2 the numerical solution procedure is briefly outlined. The flow states for
increasing Reynolds numbers are described in § 3. Local stability results are discussed
in § 4, for the computed flow fields as well as for an extrapolated flow state. For a
modified geometrical device, a locally absolutely unstable separated flow is numerically
produced in § 5 and the corresponding nonlinear oscillations are discussed in the
framework of frequency selection criteria. Some conclusions are drawn in § 6.

2. Geometry and numerical solution procedure
The two-dimensional Navier–Stokes system is made dimensionless using the

displacement thickness at inflow as reference length, the flow velocity at infinity
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Figure 1. Bump geometry, x is distance from inflow (- - -, bump with steeper rear part).

being the reference velocity. The flow domain is xa � x � xb, η(x) � y < ∞, with η(x)
the lower boundary containing the bump, which is depicted in figure 1. The bump has
been designed for measurements of fully turbulent flow (Bernhard et al. 2003) and it
is suitable for the investigation of both curvature and pressure-gradient effects. The
data of the bump used in the experiment have been interpolated using piecewise cubic
polynomial splines in order to numerically construct the graph η(x). The first and
second derivatives are then computed using finite differences: while the first derivative
is smooth, the second derivative exhibits quite sharp gradients, in particular at the
junction between the bump and the flat plate. The interpolation procedure allows the
aspect ratios of the bump to be varied in order to produce, for instance, a more or
less steep rear part. The flow geometry is transformed into a Cartesian one using the
mapping

t̄ = t, x̄ = x, ȳ = y − η(x) (2.1)

(the barred coordinates being the computational ones). The gradient and the Laplacian
operator can now be written

∇ = ∇̄ + Ḡη, � = �̄ + L̄η, (2.2)

with

Ḡη =

(
−∂η

∂x̄

∂

∂ȳ
, 0

)
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∂
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(2.3)

(∇̄, �̄ being respectively the Cartesian gradient and Laplacian). The system in the
computational coordinates (x̄, ȳ) is

∂u
∂t

+ (u · ∇̄)u + (u · Ḡη)u = −∇̄p − Ḡηp +
1

Re
�̄u +

1

Re
L̄ηu, (2.4a)

∇̄ · u = −Ḡη · u, (2.4b)

with

Re =
U∞ δxa

ν
(2.5)

the Reynolds number, δxa
being the displacement thickness at inflow and U∞ the

uniform flow velocity at infinity. The Navier–Stokes system (2.4) in the com-
putational coordinates has to be solved in the transformed Cartesian geometry
xa � x̄ � xb, 0 � ȳ < ∞. A similar coordinate transformation has been considered in
Wiplier & Ehrenstein (2001) for the computation of the spatio-temporal evolution of
perturbations in a boundary-layer flow interacting with a compliant coating. In the
wall-normal ȳ-direction an algebraic mapping

ȳ =
ymaxL(1 + ξ )

2L + ymax(1 − ξ )
(2.6)
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Figure 2. Streamlines (in the domain 0 � x � 150, 0 � y � 20), for (a) the steady state at
Re = 610; (b) time-averaged mean flow at Re = 650.

transforms the unbounded domain into a finite one ξ ∈ [−1, 1]. (In the forthcoming
computations the parameters in (2.6) have been fixed at ymax = 80 and L = 20.) Fourth-
order finite differences are used in the streamwise x-direction, whereas the wall-normal
y-direction is discretized using Chebyshev-collocation. Second-order backward Euler
differencing is used in time: the Cartesian part of the diffusion term is taken implicitly
whereas the nonlinear and metric terms are evaluated using an explicit second-
order Adams–Bashforth scheme. In order to ensure a divergence-free velocity field a
fractional time-step procedure (Kim & Moin 1985; Hugues & Randriamampianina
1998) has been adapted to the present formulation of the Navier–Stokes system
with coordinate transformation. At inflow, a Blasius profile is prescribed whereas at
outflow we use the advection condition

∂u
∂t

+ Uc

∂u
∂x

= 0, Uc =
1

y∗

∫ y∗

0

u(xb, y) dy, (2.7)

which proved to be appropriate to evacuate the vortex structures without reflection
(for a convenient upper boundary y∗ in the above integral for the convection velocity
Uc). Details about the numerical solution procedure and its validation are given in
Marquillie & Ehrenstein (2002).

3. Separating flow structure
In all simulation results presented below a bump with height h = 2 (that is twice the

displacement thickness at inflow) has been considered, with an aspect ratio (length
versus height) of about 10 (cf. figure 1). Steeper backward faces of the bump (depicted
as the broken line in figure 1) have been considered as well (cf. § 5). The flow proved
to be quite insensitive to the inflow length and in all forthcoming simulations the
bump summit is located at the streamwise position x =25 (x = 0 corresponding to
the inflow boundary). Locating first the outflow boundary at x = 200, steady states
have been computed for increasing Reynolds number, using a grid with 1000 points
in the streamwise direction and 96 collocation points in the wall-normal direction
(the time step being �t = 10−2).

One steady state for an inflow Reynolds number of Re = 610 is shown in figure 2(a).
The flow is first accelerated and then separates at the rear of the bump. No steady
state could be reached by the time-marching algorithm for Re = 620, using up to
114 collocation points in the wall-normal direction. A thorough convergence study
has been performed for Re = 650, using up to 2000 grid points in the streamwise
direction and up to 128 collocation points in the wall-normal direction. A smaller
time step of �t = 10−3 has been considered as well but no steady state could be
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Figure 3. Recirculation length, as function of the Reynolds number: +, steady state
computations; ×, time-averaged recirculation length of oscillatory flow field.

0 25 50 75 100 125 150
x

Figure 4. Instantaneous streamlines of the oscillatory flow field at Re = 650. (Smaller plots:
illustration of vortex shedding and merging downstream of the separation bubble.)

reached for Re = 650. Increasing the outflow length (locating the outflow boundary
at x = 240) led to identical results. The aim of the present investigation is to elucidate
the mechanisms of the instability, rather than to numerically locate the critical
Reynolds number. The flow at inflow Reynolds number Re = 650 is globally unstable
and it is unlikely that the instability is triggered by grid or boundary effects. The
global critical Reynolds number is hence located between 610 � Re � 650 (note that
the Reynolds number based on the bump height would take twice these values).
Figure 3 shows the recirculation length lc as a function of the Reynolds number;
it increases almost linearly for Re � 600. For Re � 650 the flow is unsteady and the
mean recirculation length is depicted: once the oscillating flow field is established,
the recirculation length has been averaged over an interval of 2000 dimensionless
time units. There is a jump to a lower value of lc which then decreases almost
linearly for increasing Reynolds number for the unsteady flow field. One example of
the time-averaged mean recirculation bubble, at Re = 650, is depicted in figure 2(b).
Experimental investigations of separating flow over backsteps (Sinha et al. 1981) and
numerical simulation results for a flow separating at the rear of a rounded step
(Dallmann et al. 1995), for instance, have produced a similar behaviour of the mean
recirculation length.

Instantaneous streamlines for the oscillating flow field at inflow Reynolds number
Re = 650 are shown in figure 4: the flow field downstream of the recirculation
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Figure 5. Power spectrum in time of streamwise velocity component u for the unsteady flow
field at Re =650. (a) x = 40, y = 1; (b) x =60, y =1.

bubble is characterized by vortex shedding and vortex pairing. On performing a
Fourier transform, for 1000 � t � 4000, of the streamwise velocity component inside
the oscillatory recirculation bubble, at x = 40, y = 1, a dominant peak at f ≈ 0.007 can
be recovered (cf. figure 5a). Further downstream low-frequency fluctuations coexist
with higher-frequency oscillations and the flow field is aperiodic, as can be seen in
figure 5(b), which shows the power spectrum at x = 60. Numerical simulations for
higher Reynolds number (Re = 800) lead to similar power spectra.

4. Local stability of the separation bubble
Hammond & Redekopp (1998) and Alam & Sandham (2000) have addressed

the question of local versus global stability of separation bubbles. In Hammond &
Redekopp (1998) for instance, a family of modified absolutely unstable Falkner–Skan
profiles has been used to produce a globally unstable recirculation bubble. Analysing
direct numerical simulation results of boundary-layer separation, Alam & Sandham
(2000) construct local velocity profiles matching with those inside the separation
bubble: the onset of local absolute instability is shown to depend on the amount of
reverse flow. However, it seems that there is no clear-cut answer to the question of
whether regions of absolute instability are a general feature in separated flows. In the
thorough two-dimensional simulations of Kaiktsis et al. (1996) for backward-facing
step flow for instance, no evidence of absolute instability could be found: the flow
has been shown to be highly convectively unstable (‘noise’ may then be responsible
for triggering unsteady flow behaviour).

4.1. Steady state and mean flow

The question hence arises of whether in our flow geometry the numerically observed
oscillations may be somehow connected to local linear stability properties. We consider
the stable state at Re =610, which is the last (with respect to the Reynolds number)
steady flow we could recover. Considering the different velocity profiles U (y), for
the streamwise positions between x = 30 and x = 125 where the flow reattaches, a
conventional linear stability analysis for the parallel flow (U (y), 0) using normal
modes

u′ = (û′(y), v̂′(y)) ei(αx−ωt), p′ = p̂(y) ei(αx−ωt) (4.1)

has been performed. Linearizing the Navier–Stokes system at (U (y), 0) and
superimposing the normal modes, one recovers an eigenvalue problem (of Orr–
Sommerfeld type), and once the modes are discretized using Chebyshev-collocation, a
matrix-eigenvalue problem is recovered which is solved numerically for the dispersion
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Figure 6. αi = const. contours in the plane (ωr, ωi), for local profiles at x = 35, (Re = 610):
+, αi = 0; − · −, αi = −0.5; · · · , αi = −0.7; —, αi = −0.76 (cusp (∂ω/∂α)(α0) = 0).

relation D(ω, α) = 0. The Reynolds number appears as a parameter for the Orr–
Sommerfeld stability computations and it has been chosen to be equal to the inflow
Reynolds number of the global steady state from which the local profiles have been
extracted. The local stability characteristics of the reversed-flow profiles are however
essentially of inviscid nature and doubling, for instance, the Reynolds number
in the Orr–Sommerfeld-type equations for stability computations leads to almost
identical results. A spatio-temporal linear stability analysis has been performed,
solving alternatively ω(α) as well as α(ω) for both complex wavenumbers α and
frequencies ω. Solving ω(α), the complex local absolute frequency is given in classical
fashion by

ω0 = ω(α0) with
∂ω

∂α
(α0) = 0; (4.2)

the locally parallel flow defined by the local profile (U (y), 0) is absolutely unstable if
the imaginary part of the complex absolute frequency is positive (for a recent review
of spatio-temporal stability analyses in open flow systems, see Huerre & Rossi (1998)
and references therein).

Figure 6 depicts the analysis for the local profile at x = 35 (the summit of the bump
being located at x =25). The αi = const. contours (for 0 � αr � 1.6) in the complex
frequency plane are shown and the cusp (the point (∂ω/∂α)(α0) = 0) appears for
αr = 1.27, αi ≈ −0.76, quite close to the real axis ωi = 0 (at least compared to the
highest temporal amplification rate for real wavenumbers close to 0.15). Figure 7
summarizes the analysis performed for the profiles over all the separation bubble.
The imaginary parts of the complex absolute frequencies for the profiles at different
x-locations are shown in figure 7(b), whereas figure 7(a) depicts ωi as function of the
frequency f = ωr/(2π) at the cusps. The complex absolute frequency is closest to the
real axis for the profile at x = 35 with f ≈ 0.055; however, the flow is still convectively
unstable. The imaginary as well as the real parts decrease in the downstream part of
the recirculation bubble (cf. figure 7a, b). It proved to be very difficult to precisely
compute local absolute frequencies in the vicinity of reattachment for x > 90: the real
and imaginary parts of the absolute frequencies continue to decrease and the cusps
are located in a region of the complex plane where a large number of damped modes
are present. Note that the stability characteristics undergo quite strong variations for
the profiles in the region 30 � x � 40, where the flow transitions from the rear part
of the bump to the flat plate (cf. figure 2). The profiles corresponding to the points
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Figure 7. Imaginary part ωi of the complex frequency at the cusp (∂ω/∂α)(α0) = 0, for local
profiles as function of (a) the frequency f = ωr/(2π) and (b) successive x-locations, for the
steady state at Re = 610. (c) Profiles corresponding to points: — , (1); - - - , (2); - - - , (3);
· · ·, (4).

(1)–(4) are shown in figure 7(c). The height of the reversed-flow region varies more
in this upstream region of the separation bubble close to the bump than further
downstream. It has, for instance, been shown in Rist & Maucher (2002) that the
height, together with the amount of reverse flow, has a strong influence on stability.
The stability characteristics have been computed using 40 collocation points in the
y-direction (the local profiles of the computed steady state being interpolated on
the corresponding grid). The reliability of results has been checked by computing
the absolute frequency for the profile at points (2) and (3) using 80 collocation points
which led to identical results up to 5 digits.

Focusing on local profiles at x =35, the imaginary part of the complex absolute
frequency as function of the Reynolds number is shown in figure 8. For the steady
states with 350 � Re � 610, the imaginary part ωi of the complex absolute frequency
increases almost linearly. Above this Reynolds number the flow is unsteady. Averaging
the flow between 2000 � t � 4000, once the oscillatory flow field is established, the
mean streamwise velocity profiles have been analysed with respect to linear stability.
In correspondence with the analysis of the steady states, the profiles at x = 35 have
been considered. In this region the separation bubble is subject only to oscillations
with small amplitudes. A thorough analysis has been performed for the time-averaged
mean flow at Re = 700, considering the profiles inside the separation bubble. Starting
at x =30 and advancing with �x = 1 in the streamwise direction, the profile at x =35
proved to exhibit the absolute frequency with highest imaginary part, as for the
steady-state flow fields. The results for the time-averaged mean flow are shown as
the squares in figure 8. They confirm the trends observed for the steady states and the
imaginary parts of the local absolute frequencies continue to increase linearly with the
Reynolds number. The stability characteristics of the mean recirculation bubble hence
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Figure 8. Imaginary part ωi of the complex frequency at the cusp (∂ω/∂α)(α0) = 0, for local
profile at x = 35 as function of the Reynolds number. +, steady states; �, time-averaged states.

correspond to the steady-flow results (the time-averaged mean recirculation bubble
shown in figure 2(b) is, though much shorter, qualitatively similar to the steady-state
recirculation zone) and no abrupt transition from local convective to local absolute
instability is found.

4.2. Extrapolated flow field

We have seen in § 3 that the time-marching algorithm was unable to converge towards
an asymptotic steady state for Reynolds numbers slightly larger than 610 and the
results of the previous section indicate that the last stable flow state which could be
recovered via numerical simulation is not at the margin of a local absolute instability.
To explore the hypothesis that the onset of oscillations is somehow connected to some
global feature of the flow field, we tentatively extrapolate the steady states obtained
for Re � 610 to higher Reynolds numbers.

For this purpose, a polynomial extrapolation procedure in the Reynolds number
Re has been employed. A model flow field

(u, v)(x, y; Re) =

K∑
k=0

(u, v)k(x, y)Rek (4.3)

has been constructed by Lagrangian polynomial interpolation in the Reynolds
number Re. The ‘coefficients’ (u, v)k(x, y) in (4.3) have been computed such that
the flow field (u, v)(x, y; Re) is identical to the computed steady-state flow field for
Re = 350, 400, 450, 500, 550, 610, that is K =5 in (4.3). In order to check whether this
procedure is reasonable, the flow field has been interpolated for Reynolds numbers
up to 550 (by a fourth-order polynomial in Re) and the flow field has then been
extrapolated to Re =610 and compared with the computed steady state (shown
in figure 2a). The error ε between the extrapolated flow field (u, v)i(x, y) and the
computed steady state (u, v)c(x, y) at Re = 610 proved to be about 10−3, with

ε = max
x,y

|(u, v)i(x, y) − (u, v)c(x, y)

|(u, v)c(x, y)| .

On extrapolating the flow field to higher Reynolds numbers, quite surprisingly the
flow streamlines obtained by the interpolation (4.3) undergo a geometrical distortion.
Figure 9 shows the extrapolated streamlines at Re = 660 and Re =680. On inspecting
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Figure 9. Streamlines (in the domain 0 � x � 150, 0 � y � 20) of the extrapolated flow field
at (a) Re = 660 and (b) Re = 680.

the downstream part of the separation bubble, a kink at the upper limiting streamline
appears and ultimately part of the separation bubble detaches at Re = 680. It is
of course a matter of interpretation whether one may consider the extrapolation
procedure as relevant. The extrapolated Reynolds numbers of Re = 660, 680 are
however sufficiently close to Re = 610 to lend some support to the hypothesis that the
flow field for Re > 610 becomes structurally unstable (in the sense that flow states with
one closed recirculation bubble do not exist any more). The appearance of multiple
recirculation zones is in agreement with previous conjectures (Dallmann et al. 1995)
that changes in streamline topology coincide with the onset of unsteadiness in a
laminar separation bubble. More recently, this conjecture has been reinforced by
Theofilis et al. (2000) using a non-local stability analysis based on the parabolized
stability equations: it is shown in this latter work that the superposition of the basic
flow with a recirculation bubble and a global mode may lead to a flow structure with
a secondary separation point, in the vicinity of the reattachment point of the basic
state. The flow topology with the secondary recirculation bubble shown in figure 9(b)
in the vicinity of the primary reattachment point corresponds qualitatively to the flow
topology prior to unsteadiness shown in Dallmann et al. (1995) (cf. figure 19 therein).

The topology of the extrapolated recirculation bubble is distinct from that of
the steady state or the time-averaged state depicted in figure 2 and may hence
exhibit different stability characteristics. Considering the local streamwise velocity
profiles of the extrapolated flow field at Re = 680 shown in figure 9(b), the linear
stability analysis, computing the complex local absolute frequency, leads to the results
summarized in figure 10. While the absolute complex frequencies in the upstream
part of the recirculation bubble behave like those of the computed steady state at
Re =610 shown in figure 7, the imaginary part of the absolute frequency suddenly
increases for x > 80. It reaches a maximum value very close to ωi = 0, for 95 � x � 100
(cf. figure 10a). A local region characterized by a closed streamline centred at x = 100
can be seen in figure 9(b), and this region seems to be on the point of detaching
from the main recirculation bubble. This topological change appears to have a
tremendous effect on local absolute stability. As shown in figure 10(b), the increase in
absolute growth rate is accompanied by a fall in frequency with a minimum frequency
f ≈ 0.017 at x = 105. Figure 10(a) shows that the flow is at the very margin of local
absolute instability. Some profiles have been considered at higher Reynolds numbers
(the reliability of the extrapolated model flow field with respect to real flow becomes
of course more and more questionable on increasing the Reynolds number) and for
Re =700 for instance the profile at x = 95 is absolutely unstable with a relatively high
growth rate ωi =0.045.
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Figure 10. (a) Imaginary part ωi and (b) frequency f = ωr/(2π) of the complex frequency at
the cusp (∂ω/∂α)(α0) = 0, for local profiles at successive x-locations for the extrapolated state at
Re = 680 shown in figure 9(b). (c) Profiles at - - -, x = 90; —, x = 95; - - -, x = 100; · · ·, x =105.

Some local profiles in the region 90 � x � 105 are depicted in figure 10(c). They
are quite distinct from those in the upstream part of the separation bubble shown in
figure 7(c), the most striking difference being the amount of reverse flow. Note that
the profiles at x = 95, 100 for instance are quite similar to those depicted in Alam
& Sandham (2000) (cf. figure 20 therein) with more than 20% reverse flow. The
region near the reattachment point of the extrapolated recirculation bubble is hence
undergoing an abrupt transition from local convective, to local absolute instability.
While the frequency close to the margin of absolute instability of f ≈ 0.017 is low
in comparison to f ≈ 0.055, for the least stable absolute frequency of the computed
steady state at Re = 610 discussed in § 4.1, it is however more than twice the low
frequency f ≈ 0.007 of the dominant peak in the power spectrum for the unsteady
flow field at Re = 650 shown in figure 5(a).

5. Synchronized oscillations in geometrically controlled separated flow
In § 4.2 some evidence has been given that the global instability discussed in § 3 may

be due to topological changes in the reattachment region which lead to a bursting of
the recirculation bubble. One way to reinforce this hypothesis is to prevent the bubble
from bursting, for instance by reaccelerating the flow in the downstream part of the
bubble, and to see whether the flow may be stabilized in this way. In order to achieve
reacceleration of the flow, a geometry with a second bump, downstream of the first
one which triggers separation, has been considered. Varying the distance between
the two bumps, we indeed succeeded in stabilizing the separated flow induced by
the upstream bump. Figure 11 depicts streamlines for the double-bump geometry. A
somewhat steeper geometry at the rear face of the upstream bump has been considered
(shown as the broken line in figure 1). In figure 11(a) instantaneous streamlines are
shown and by diminishing the distance between both bumps the flow field could be
stabilized. The steady state, at Re = 600, is shown in figure 11(b) with a separated
flow region between the two bumps followed by a smooth separation at the rear of
the second bump. Note that for the single-bump geometry with the steeper rear face
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Figure 11. Instantaneous streamlines (in the domain 0 � x � 120, 0 � y � 15), at Re = 600
for the double-bump configuration: (a) unsteady case, (b) steady case.
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Figure 12. Time history of the streamwise velocity at x = 40, y = 1 for the double-bump
configuration. (a) Re = 850, 400 � t � 2000; (b) Re =900, 400 � t � 2000; (c) Re = 900, 4000 �
t � 5600.

the flow is oscillatory at Re =600, the unsteady flow characteristics being similar to
those of the separating flow analysed in § 3.

For this new configuration, computations have been performed for increasing
inflow Reynolds number and steady states could be achieved up to Re = 850. The
streamwise velocity as function of time at x = 40, y =1 (that is inside the separation
bubble downstream of the first bump, cf. figure 11) is shown in figure 12(a), for
Re =850. After a transient time the oscillations clearly die out. The situation is
different at inflow Reynolds number Re = 900. Now the amplitude increases until
nonlinear saturation is reached, as shown in figure 12(b, c). The flow field is now strictly
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Figure 13. Power spectrum (in logarithmic scale) of the time history of the streamwise
velocity, Re = 900: (a) x = 40, y = 1; (b) x = 60, y = 1.
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Figure 14. Instantaneous streamlines of (a) the total flow field and (b) the perturbation u′,
for the double-bump configuration at Re = 900.
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Figure 15. (a) Imaginary part ωi of the complex frequency at the cusp (∂ω/∂α)(α0) = 0 as a
function of ωr and (b) the corresponding profiles, at x = 33, for the double-bump configuration:
- - -, Re = 600; - - -, Re = 850; —, Re = 900.

periodic. The harmonic spectra, for the oscillating flow between 4000 � t � 6000, at
different streamwise locations x = 40 and x = 60, are depicted in figure 13. There is
clear evidence of a global synchronized frequency at fg = 0.069, with its harmonics.
Figure 14(a) shows the global instantaneous flow field at Re =900, and instantaneous
streamlines of u′ = u − ū (ū being the mean flow, averaged for 2000 < t < 4000) are
depicted in figure 14(b). The global, nonlinear mode is shown to have a spatially
periodic cellular structure.

To interpret the global synchronized oscillatory behaviour in terms of local stability
properties, the local profiles inside the separated-flow region between the two bumps
have been considered. A linear stability analysis has been performed, focusing as
in § 4 on the complex absolute frequency. The results for the profile at x = 33 (that
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is close to the upstream bump, cf. figure 11), are shown in figure 15(a), the cusps
(∂ω/∂α)(α0) = 0 being depicted in the complex frequency plane. On increasing the
Reynolds number, the local flow field clearly undergoes transition from convective
to absolute instability for 850 <Re < 900. The corresponding profiles are shown in
figure 15(b): the profiles at the margin of absolute instability exhibit a second inflection
point in the reversed-flow region (besides the one just above the dividing streamline,
typical for boundary-layer profiles in separated flow regions, cf. figure 7c).

One may wonder whether the flow field for the double-bump geometry is reminiscent
of the flow with one bump (the steeper upstream one), in the upstream part of the
recirculation bubble. For this purpose the flow for the single-bump geometry has been
computed: for Re � 600 the flow is unsteady and time-averaged mean-flow profiles at
x = 32 have been considered. The corresponding absolute local frequencies have been
computed and compared to those for the double-bump geometry (the flow state in
this latter case being steady up to Re = 850). The comparison is shown in figure 16:
real as well as imaginary parts of the absolute frequencies show the same trends, and
the local time-averaged mean velocity profiles for the single-bump geometry becomes
absolutely unstable for Re =850. It should be emphasized that the unsteady flow
for the single-bump geometry at Re > 600 is qualitatively very similar to the flow
described in § 3. In particular, at Re = 850 the global flow is unsteady and no definite
frequency is selected. That is, the local stability characteristics of the time-averaged
mean flow (with a quite short mean recirculation bubble) are not representative of
the global stability behaviour for the single-bump geometry.

The flow field at Re = 900 for the double-bump geometry, however, is characterized
by self-sustained oscillations and mean velocity profiles have been considered for the
local stability analysis. The oscillations in the upstream part of the separation bubble
at the rear of the bump (for 31 � x � 35) almost vanish and it has been checked that
considering local instantaneous velocity profiles in this region leads to almost identical
linear stability results. For the flow states at Re =900, the imaginary part ωi(x) as
well as the real frequency f = ωr (x)/(2π) of the local absolute frequency for profiles
at different x-locations are shown in figure 17(a, b). (Some local instantaneous profiles
have been considered as well and the results shown in figure 17 almost superimpose.)
As shown in figure 17, there is a local region of absolute instability for 32 <x < 36,
inside the separation bubble between both bumps.

Recent investigations of Pier & Huerre (2001) and Pier (2002) have addressed
the question of linear versus nonlinear frequency selection criteria for wake flows.
Linear global mode analyses (Le Dizès et al. 1996) imply a linear frequency selection
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criterion

ωl = ω(xl) with
dω

dx
(xl) = 0, (5.1)

where the complex absolute frequencies ω(x) = ω(α0, x) at the x-locations are
analytically continued in the complex x-plane. As suggested in Cooper & Crighton
(2000), rational function interpolation is most convenient to extrapolate the real
data ω(x) to complex x. A rational function φn,n(x) = P n(x)/Qn(x), with P n(x), Qn(x)
polynomials whose degree is at most n, has been computed by interpolating the
data shown in figure 17 for Re = 900 at (real) x-locations (such that φn,n(xk) =
ω(xk), k = 0, 1, . . . , 2n), using Thiele’s continued fraction algorithm (Stoer & Bulirsch
1992). The absolute complex frequencies at discrete streamwise locations between
32 � x � 36.2 have been considered, and varying the degree of interpolation 7 � n � 10
hardly affects the results. Some lines at constant imaginary parts xi for n= 10 are
shown in figure 18 and there is evidence that a cusp is forming for xi ≈ 0.075. At this
point dω/dx = 0, for ωi > 0, that is the flow is unstable with respect to linear global
modes. The corresponding real part is ωr ≈ 0.372 and hence f ≈ 0.059.

The nonlinear frequency, under the assumption of slow streamwise variation of the
flow, is selected such that

f =
ωr (xca)

2π
with ωi(xca) = 0 and

dωi

dx
(xca) > 0, (5.2)

ω(x) being the absolute frequency and xca the upstream border of absolute instability
with respect to the streamwise variation (Pier et al. 2001). Inspecting figure 17,
xca ≈ 32 and the corresponding frequency f = ωr (xca)/(2π) ≈ 0.068 is very close to
the frequency fg = 0.069 of the global flow simulation (cf. figure 13), unlike the
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frequency resulting from the linear selection criterion. Hence, the nonlinear selection
criterion, based on a weakly non-parallel flow assumption, predicts quite accurately the
frequency of the self-sustained oscillations shown in figure 12(c), for the geometrically
controlled separated boundary layer.

6. Concluding discussion
Two-dimensional stability of a separated boundary-layer flow has been addressed,

focusing on a possible relationship between local stability characteristics inside the
separation bubble and the onset of nonlinear oscillations of the global flow field. The
numerical computed flow field has been shown to undergo self-sustained oscillations
above a critical Reynolds number, characterized by low-frequency oscillations with
f ≈ 0.007 in the upper region of the recirculation bubble. In the recent experiments
by Häggmark et al. (2000) (flow separation being caused by an adverse pressure
gradient imposed by a curved wall opposite to the plate), amplitude spectra have
been measured for two-dimensional oscillatory separation bubbles. Low-frequency
oscillations (frequencies less than f ∗ = 20 Hz) are shown to dominate in the upstream
region of the separation bubble, whereas further downstream the flow is subject
simultaneously to low-frequency and high-frequency oscillations. Inspecting figure 5
in Häggmark et al. (2000), one may estimate the local mean displacement thickness as
roughly δ∗ =5mm, at the streamwise locations where the low-frequency fluctuations
dominate inside the separation bubble. The corresponding dimensionless frequency
(fe = f ∗δ∗/Ue, with a reference velocity at the leading edge Ue = 7 m s−1) is fe ≈ 0.015.
In our numerical simulation results, the dimensionless frequency based on the
displacement thickness at x = 40, that is at a position where the low-frequency
oscillations dominate, is fx =40 ≈ 0.022 (the ratio between the mean displacement
thickness at x = 40 and the displacement thickness at inflow being δx =40/δxa

≈ 3.2).
The two values have the same order of magnitude, even though the comparison may
seem questionable (given the different ways of triggering the separation bubble).

Low-frequency fluctuations, also called ‘flapping’, have been shown to be a
characteristic feature of separated layers in general (Cherry et al. 1984; Dovgal
et al. 1994). It has been argued that they are due to a global instability manifested
in the reattachment region (Theofilis et al. 2000; Häggmark et al. 2000), triggered
by topological flow changes generating secondary recirculation zones (Dallmann
et al. 1995). For the present flow case, the computed steady states up to the critical
Reynolds number of global instability do not show transition from local convective
to local absolute instability at low frequencies. An extrapolation procedure, using
successive computed steady states, has been employed to generate a flow field at
Reynolds numbers above criticality. Interestingly, above the global critical Reynolds
number the streamlines undergo topological changes in the reattachment region
and ultimately a rupture of the increasingly elongated bubble occurs. While the
extrapolation procedure may only produce a more or less representative flow state,
the emerging secondary recirculation zones are however similar to topological flow
changes discussed in Dallmann et al. (1995) and which have been conjectured to be
prior to unsteadiness.

By computing the complex absolute frequencies of the local extrapolated profiles,
it has been shown that the topological changes trigger an abrupt local transition
to absolute instability, at low frequencies. The corresponding local profiles near
reattachment exhibit up to 30% of reverse flow, and they are located in a region
which is detaching from the main bubble. Although the value of the low-frequency
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oscillations of the numerically computed flow field is not retrieved (highly non-parallel
effects may prevent a definite frequency selection) these results lend some support to
the following scenario. The flow becomes structurally unstable for Reynolds numbers
above criticality and the topological changes characterized by a breakup of the
bubble generate absolutely unstable local profiles in the reattachment region. The
resulting low-frequency perturbations propagate upstream. Once the flow field is
permanently disturbed, higher-frequency disturbance wavetrains are triggered due to
the highly convective instability of the upstream part of the recirculation bubble
(which may explain the simultaneous high-frequency and low-frequency peaks in the
power spectrum shown in figure 5b).

This hypothesis is reinforced in the sense that a reacceleration of the flow in the rear
part of the recirculation bubble is indeed capable of globally stabilizing the flow. In
our numerical investigation, the reacceleration has been achieved by a second bump
mounted on the plate at an appropriate distance from the upstream one which triggers
separation. A separated flow region between the two bumps could then be produced
which remains globally stable for increasing inflow Reynolds numbers. Ultimately a
local region of absolute instability appears. The recirculation zone confined between
the two bumps is reminiscent of the most-upstream part of the recirculation bubble
in the single-bump geometry. The global instability, at high frequency, of the flow
generated by the double-bump geometry coincides with the appearance of local
absolute instability. The single-bump flow is unstable however (with a presence of
a low-frequency fluctuation) well before transition from local convective to local
absolute instability in the upstream part of the bubble occurs. This reinforces the
conjecture that the loss of stability of the elongated single-bump recirculation bubble
is related to topological changes.

Separated flow models with local absolute instability have been proposed for
instance by Alam & Sandham (2000) and Hammond & Redekopp (1998). Our
numerical simulation results show that synchronized oscillations due to a region of
local absolute instability may indeed be present in ‘real’ (though numerically produced)
separated boundary-layer flow. The absolutely unstable profiles of the separated
flow generated by the double-bump geometry have relatively little reverse flow but
exhibit an inflection point in the reversed-flow region. The instability mechanism is
characterized by a global saturated mode, oscillating at a well-defined period, which
can be interpreted in the framework of nonlinear frequency selection criteria (which
have been shown to successfully apply to wake flows, Pier 2002).

The authors are grateful to Jean-Marc Chomaz, Patrick Huerre and Benoı̂t Pier for
very stimulating and fruitful discussions. It is a pleasure to thank Jean-Marc Lacroix
who provided some of the computer plot software. Parts of the computations have
been performed on the NEC/SX5 of the IDRIS, France, under grant 4055.
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Nonlinear Instabilities (ed. C. Godrèche & P. Manneville), pp. 81–294. Cambridge University
Press.

Hugues, S. & Randriamampianina, A. 1998 An improved projection scheme applied to pseu-
dospectral methods for the incompressible Navier-Stokes equations. Intl J. Numer. Methods
Fluids 28, 501–521.

Kaiktsis, L., Karniadakis, G. E. & Orszag, S. A. 1991 Onset of three-dimensionality, equilibria
and early transition in flow over a backward-facing step. J. Fluid Mech. 231, 501–528.

Kaiktsis, L., Karniadakis, G. E. & Orszag, S. A. 1996 Unsteadiness and convective instabilities
in two-dimensional flow over a backward-facing step. J. Fluid Mech. 321, 157–187.

Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier-Stokes
equations. J. Comput. Phys. 59, 308–323.

Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake
flows. J. Sound Vib. 99, 53–83.

Le Dizès, S., Huerre, P., Chomaz, J.-M. & Monkewitz, P. 1996 Linear global modes in spatially
developing media. Phil. Trans. R. Soc. Lond. A 354, 169–212.

Marquillie, M. & Ehrenstein, U. 2002 Numerical simulation of separating boundary-layer flow.
Computers Fluids 31, 683–693.

Monkewitz, P. A., Bechert, D. W., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations
and mixing in a heated round jet. J. Fluid Mech. 213, 611–639.

Moresco, P. & Healey, J. J. 2000 Spatio-temporal instability in mixed convection boundary layers.
J. Fluid Mech. 402, 89–107.

Pauley, L. L., Moin, P. & Reynolds, W. C. 1990 The structure of two-dimensional separation.
J. Fluid Mech. 220, 397–411.

Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake.
J. Fluid Mech. 458, 407–417.

Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing
wake flows. J. Fluid Mech. 435, 145–174.

Pier, B., Huerre, P. & Chomaz, J. M. 2001 Bifurcation to fully nonlinear synchronized structures
in slowly varying media. Physica D 148, 49–96.

Ripley, M. D. & Pauley, L. L. 1993 The unsteady structure of two-dimensional steady laminar
separation. Phys. Fluids A 5, 3099–3106.

Rist, U. & Maucher, U. 1994 Direct numerical simulation of 2-D and 3-D instability waves
in a laminar separation bubble. In AGARD-CP-551, Application of Direct and Large Eddy
Simulation to Transition and Turbulence, pp. 34-1–34-7.



188 M. Marquillie and U. Ehrenstein

Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation
bubbles. Eur. J. Mech. B/Fluids 21, 495–509.

Sinha, S. N., Gupta, A. K. & Oberai M. M. 1981 Laminar separating flow over backsteps and
cavities. Part I: backsteps. AIAA J. 19, 1527–1530.

Stoer, J. & Bulirsch, R. 1992 Introduction to Numerical Analysis, Texts in Applied Mathematics,
Vol. 12, Springer.

Theofilis, V., Hein, S. & Dallmann U. 2000 On the origins of unsteadiness and three-dimensionality
in a laminar separation bubble Phil. Trans. R. Soc. Lond. A 358, 3229–3246.

Williams, P. T. & Baker, A. J. 1997 Numerical simulations of laminar flow over a 3D backward-
facing step. Intl J. Numer. Methods Fluids 24, 1159–1183.

Wiplier, O. & Ehrenstein, U. 2001 On the absolute instability in a boundary-layer flow with
compliant coatings. Eur. J. Mech. B/Fluids 20, 127–144.

Yang, Z. & Voke, P. R. 2001 Large-eddy simulation of boundary-layer separation and transition at
a change of surface curvature. J. Fluid Mech. 439, 305–333.


